
SANDIA REPORT
SAND2015-9013
Unlimited Release
Printed October 2015

Roadmap for Peridynamic Software
Implementation

David J. Littlewood

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2015-9013
Unlimited Release

Printed October 2015

Roadmap for Peridynamic Software
Implementation

David J. Littlewood
Multiscale Science Department
Center for Computing Research
Sandia National Laboratories

P.O Box 5800
Albuquerque, NM 87185-1322

Abstract

The application of peridynamics for engineering analysis requires an efficient and
robust software implementation. Key elements include processing of the discretization,
the proximity search for identification of pairwise interactions, evaluation of the con-
stitutive model, application of a bond-damage law, and contact modeling. Additional
requirements may arise from the choice of time integration scheme, for example esti-
mation of the maximum stable time step for explicit schemes, and construction of the
tangent stiffness matrix for many implicit approaches. This report summaries progress
to date on the software implementation of the peridynamic theory of solid mechanics.
Discussion is focused on parallel implementation of the meshfree discretization scheme
of Silling and Askari [33] in three dimensions, although much of the discussion applies
to computational peridynamics in general.

3

Acknowledgment

This report was supported by the Laboratory Directed Research and Development (LDRD)
Program at Sandia National Laboratories. The author acknowledges many helpful discus-
sions with Stewart Silling, John Mitchell, Michael Parks, John Foster, Dan Turner, and the
Sierra/SolidMechanics development team.

4

Contents

1 Introduction . 7
2 Evaluating the internal force density. 11
3 Bond damage and failure . 15
4 The tangent stiffness matrix . 17
5 Modeling contact . 21
6 Meshfree discretizations for peridynamics . 25
7 Proximity search for identification of pairwise interactions . 27
8 Time integration . 29

8.1 Explicit time integration for transient dynamics . 29
8.2 Estimating the maximum stable time step . 31
8.3 Implicit time integration for quasi-statics . 32

9 Example simulations . 35
9.1 Fragmentation of a brittle disk resulting from impact . 35
9.2 Quasi-static simulation of a tensile test . 36

10 Summary . 41

5

This page intentionally left blank.

1 Introduction

Peridynamics has advanced the state of the art for modeling material failure and fragmenta-
tion within a computational simulation code. To be effective in modeling real-world systems,
the underlying theory must be accompanied by an effective software implementation. The
goal of this report is to provide a roadmap for implementing peridynamics within an analysis
code. This is motivated in part by the gaps that exist between much of the available literature
on peridynamics, which is often focused on theoretical considerations, and implementation
challenges that can arise in practice.

This report focuses exclusively on the meshfree approach of Silling and Askari [33]. To
date, the vast majority of peridynamic simulations have utilized this approach. The decision
to focus on this particular computational strategy is not meant to imply that it is superior to
alternative approaches. Applying the finite-element technique to peridynamics, for example,
may provide superior results in some cases. Nonetheless, the meshfree approach of Silling
and Askari has proven to be a reliable and efficient strategy for addressing problems in solid
mechanics with pervasive material failure and fracture. Advantages include ease of imple-
mentation, computational efficiency, and the presence of a natural mechanism for material
separation. The method of Silling and Askari is a direct discretization of the strong form of
the peridynamic balance of linear momentum [34],

ρ (x) ü (x, t) =

∫
Hx

(T [x, t] 〈q− x〉 −T [q, t] 〈x− q〉) dVq + b (x, t) , (1)

where ρ is the material density, ü is acceleration, t is time, x and q are material points, Hx

is a spherical neighborhood of radius δ centered at x, T denotes a peridynamic force state,
dVq denotes the infinitesimal volume associated with q, and b is a body force density. For
problems in three dimensional space, the approach of Silling and Askari requires evaluation
of a three-dimensional integral. In contrast, solution of the weak form of the peridynamic
balance of linear momentum, for example using a finite-element discretization, requires eval-
uation of a six-dimensional integral. For this reason, solution strategies for peridynamic
models based on the weak form entail significant geometric complexity and computational
expense relative to strong-form strategies.

The goal of a peridynamic simulation is to model material response within a body or a set
of bodies under prescribed conditions over a specified period of time. This is accomplished
numerically by discretizing the governing equations in both space and time. Following Silling
and Askari [33], the physical system is discretized into a finite number of nodes, each having
a (scalar) volume associated with it. A co-locational approach is employed, meaning that
the nodes are used for tracking field variables such as displacement and velocity, and also
as material points for constitutive model evaluations. This strategy is comparable to a one-
point Gauss quadrature scheme in which all fields are assumed constant over the domain of
integration and the Gauss point is located at the centroid of the domain (akin to midpoint
integration).

The response of a peridynamic system as a whole is determined by solving the following

7

semidiscrete equation of motion over time for each material point in the discretization,

ρ (x) ü (x, t) =
∑
Hx

(T [x, t] 〈q− x〉 −T [q, t] 〈x− q〉) ∆Vq + b (x, t) , (2)

where the integral in Equation (1) has been replaced by a summation over the set of neighbors
for material point x. The force states T [x, t] and T [q, t] are determined through evaluation
of the constitutive models at points x and q, respectively. Contact interactions, if any,
provide additional nodal force densities that must be included in Equation (2). In general,
simulations may involve multiple bodies, multiple materials, and any number of specified
initial and boundary conditions. Equation (2) holds for both bond-based and state-based
constitutive models, as bond-based models can be considered a subset of the more general
family of state-based models.

The progression of a simulation is driven by a time integration routine. The duration of
the simulation is divided into a finite number of time steps or load steps at which Equation (2)
is evaluated. In the case of the explicit time integration scheme described in Section 8.1,
Equation (2) is applied to solve directly for nodal accelerations. The accelerations are then
applied at each node to advance the simulation from one time step to the next. In contrast,
the implicit time integration scheme for quasi-static simulations outlined in Section 8.3 treats
the nodal displacements as the unknowns. Equation (2) is applied to solve for the displace-
ment values that yield zero acceleration for those nodal degrees of freedom not subjected
to kinematic boundary conditions. Regardless of the time integration strategy, simulations
proceed by prescribing a set of know values at a given time step, e.g., positions or velocities
over a subset of the domain, followed by determination of the remaining field and material
state data through application of the governing peridynamic equations. The net result is a
complete description of kinematic and material state data for all material points (nodes) in
the discretization for every time step in the simulation, from which any number of secondary
quantities of interest may be determined.

At a high level, a computational peridynamics code contains several key components:
a time integrator, a method for evaluating the internal force, routines for evaluating bond
damage laws, routines for applying initial and boundary conditions, a means to evaluate and
apply contact forces, and input/output routines for storing and retrieving data. For tran-
sient dynamic simulations, the critical time step must be estimated. Simulations employing
implicit time integration generally require the implementation of a nonlinear solver. One
standard approach for solving a nonlinear system of equations is Newton’s method, which
requires the construction of a tangent stiffness matrix and a method for solving a linear
system of equations.

Peridynamics has been implemented in standalone software, and also as a component of
larger, more comprehensive simulation codes. EMU, written by Stewart Silling, was the first
computational peridynamics code [33]. Examples of preexisting software packages in which
peridynamics has been implemented include LAMMPS and Sierra/SolidMechanics [23, 30].
It has also been demonstrated that peridynamics can be implemented in the commercial
finite-element code Abaqus [20]. A more recent implementation of peridynamics is the open-
source code Peridigm [24, 25].

8

There is potential for confusion with regard to the nomenclature applied to peridynamic
discretizations. In this report, the terms node, nodal volume, and material point are used to
describe a discretized peridynamic body. The term nodal volume refers directly to the point-
wise position and volume data utilized in the discretization method of Silling and Askari.
Nodes are used both as a means to track model geometry and as the locations for mate-
rial model evaluations. The terms node and material point are used in reference to these
distinct roles and provide alignment with standard computational mechanics terminology.
The approach of Silling and Askari is typically referred to as meshless or meshfree, owning
to the fact that nodes and nodal connectivities defining physical volumetric elements (as in
standard finite-element approaches) are not considered. A primary source of confusion with
regard to this terminology stems from the fact that, in practice, geometric data defining
volumetric elements are often utilized in the discretization process as a means to compute
nodal volumes (cf. Henke and Shanbhag [13]). Further, the geometries of the regions associ-
ated with each node have been utilized to improve the accuracy of peridynamic quadrature
by taking into account the partial intersections of these entities with the spheres that define
peridynamic neighborhoods [4, 29, 28].

The following sections address the primary components of a computational peridynam-
ics code. Where it is illustrative to do so, the Peridigm code is used as an example. The
discussion assumes that simulations are three dimensional, although concepts are generally
applicable to one- and two-dimensional simulations as well. The majority of the content is
focused on serial code. While implementation of a parallel code adds complexity, there are
no fundamental changes required to the core peridynamic algorithms. Software implemen-
tation of a peridynamic constitutive model is presented first, followed by sections covering
bond failure, the tangent stiffness matrix, contact modeling, meshfree discretizations, the
proximity search for identifying peridynamic bonds, and time integration. Finally, example
simulations demonstrating explicit transient dynamics and quasi-statics are presented.

9

This page intentionally left blank.

2 Evaluating the internal force density

The core kernels of a peridynamic code are the routines for computing the internal force
density. The internal force density is determined via constitutive laws that compute pairwise
force densities between bonded material points based on kinematic data and, optionally,
material state variables. Software routines associated with a constitutive model include
initialization, calculation of the internal force density, and, optionally, calculation of the
tangent stiffness matrix. Each of these routines has access to initial positions, nodal volumes,
neighbor lists, values for the current time and the time step size, and basic kinematic data
that are updated throughout the simulation by the time integration routine (e.g., velocities
and current positions). In addition, constitutive models may define material-specific data
fields that are tracked and updated over the course of a simulation.

Constitutive model routines are intimately tied to the time integrator. The goal of a
time integrator is to advance a simulation from a given time step or load step, n, to the
next step, n + 1. For this reason, values corresponding to both step n and step n + 1 are
tracked for many fields. Tracking nodal positions at steps n and n+ 1, for example, enables
a constitutive model to compute rates of deformation. The storing of solutions at both step
n and n+1 also facilitates the evaluation of trial configurations for implicit time integration.
In this case, the solution at step n must be available for reuse in the evaluation of multiple
trial configurations.

The initialization and internal force density routines for the linear peridynamic solid con-
stitutive model [34] with a Gaussian influence function are presented in Algorithms 1 and 2,
respectively. Here, x denotes nodal coordinates in the undeformed configuration, ξ is a
bond vector in the undeformed configuration, u denotes displacement, η denotes relative
displacement of bonded material points, δ is the peridynamic horizon, ω is an influence
function value, e denotes extension state, ed denotes deviatoric extension state, m denotes
weighted volume, ∆V is a nodal volume, θ denotes dilatation, t is a scalar force state, M is
the unit vector aligned with a bond in the deformed configuration, and f denotes internal
force density. The material parameters µ and k are the shear modulus and bulk modulus,
respectively. Note that in the internal force density routine, the force state corresponding
to each material point is computed only once. After the force state for a given point, x, is
computed, it is immediately applied to the bonds 〈qi − x〉 and 〈x− qi〉 that correspond to
each neighbor, qi, of x. The resulting pairwise force density vectors are summed directly
into the global force density vector for both x and q in accordance with Equation (2). For
simplicity, Algorithm 2 is presented with the assumption that the nodal volumes, ∆Vi, are
the full nodal volumes associated with node i. As discussed in Section 7, the physical vol-
umetric region associated with a node may lie partially inside and partially outside a given
peridynamic neighborhood. The accuracy of Algorithm 2 may be improved by modifying
the nodal volumes to account for partial intersections (cf. Bobaru and Ha [4], Seleson [29],
and Seleson and Littlewood [28]).

11

Algorithm 1 The initialization routine for a linear peridynamic solid material with a Gaus-
sian influence function.

1: procedure Linear Peridynamic Solid Initialization
2: . Compute the weighted volume for each node.
3: for each node i do
4: mi ← 0
5: for each node j in neighbor list for node i do
6: ξ ← xj − xi

7: ω ← exp
(
− |ξ|

2

δ2

)
8: mi ← mi + ω |ξ|2 ∆Vj
9: end for

10: end for
11: end procedure

12

Algorithm 2 Routine for calculation of the internal force density for a linear peridynamic
solid material with a Gaussian influence function.

1: procedure Linear Peridynamic Solid Internal Force
2: . Initialize the global force density vector to zero.
3: for each node i do
4: fi ← 0
5: end for
6: . Compute the dilatation for each node.
7: for each node i do
8: θi ← 0
9: for each node j in neighbor list for node i do

10: ξ ← xj − xi
11: η ← uj − ui

12: ω ← exp
(
− |ξ|

2

δ2

)
13: e← |ξ + η| − |ξ|
14: θi ← θi + 3

mi
ω |ξ| e∆Vj

15: end for
16: end for
17: . Compute the pairwise contributions to the global force density vector.
18: for each node i do
19: for each node j in neighbor list for node i do
20: ξ ← xj − xi
21: η ← uj − ui

22: ω ← exp
(
− |ξ|

2

δ2

)
23: e← |ξ + η| − |ξ|
24: ed ← e− θi |ξ|

3

25: t← 3
mi
k θi ω |ξ|+ 15µ

mi
ω ed

26: M← ξ+η
|ξ+η|

27: fi ← fi + t M ∆Vj
28: fj ← fj − t M ∆Vi
29: end for
30: end for
31: end procedure

13

This page intentionally left blank.

3 Bond damage and failure

Peridynamic bonds provide a natural framework for modeling material damage and failure.
Following Silling and Askari [33], a scalar damage value is assigned to each bond in a peri-
dynamic body. One approach is to define a damage variable, dij, that tracks the damage
between the bonded material points xi and xj. The damage variable is restricted to values
between 0.0 and 1.0, where dij = 0.0 denotes an undamaged bond and dij = 1.0 denotes
complete bond failure. Bond damage values are updated throughout the course of a simu-
lation and incorporated directly into the calculation of internal force density. For example,
the influence function that defines a weighting between the bonded material points xi and
xj in a state-based constitutive law may be modified by the factor (1.0− dij). In this way,
the influence of damaged bonds is reduced, and bonds that have failed completely are effec-
tively excluded from the simulation. The accumulation of broken bonds leads to material
separation and the formation of cracks.

Pseudocode for the critical stretch bond failure law [33] is presented in Algorithm 3.
The bond damage values, dij, are initialized to 0.0 at the onset of the simulation. At each
time step or load step, the bond stretch, s, defined as the change in bond length divided
by the undeformed bond length, is computed for each pair of bonded material points in the
body. The stretch values are then checked against a specified critical value, so. If the stretch
exceeds the critical value, the bond is irreversibly broken (dij is set to 1.0).

As shown by Silling and Askari [33], the critical stretch value is directly related to the
fracture energy associated with the creation of free surfaces,

so =

√
5Go

9kδ
, (3)

where Go is the fracture energy per unit area, k is the bulk modulus, and δ is the peridynamic
horizon. Additional connections between peridynamic bond failure laws and standard con-
cepts in classical mechanics, including the formulation of a work-based bond failure criterion,
are given by Foster, et al. [10].

15

Algorithm 3 Routine for evaluation of the critical stretch bond failure law. Bond damage
values, dij, are initialized to zero at the beginning of the simulation and set to a value of one
if the bond stretch exceeds the specified critical value.

1: procedure Critical Stretch Bond Failure
2: for each node i do
3: . Evaluate the stretch of each bond.
4: for each node j in neighbor list for node i do
5: ξ ← xj − xi
6: η ← uj − ui
7: s = |ξ+η|−|ξ|

|ξ|
8: . Check the bond stretch against the critical value.
9: if s ≥ so then

10: dij = 1.0
11: end if
12: end for
13: end for
14: end procedure

16

4 The tangent stiffness matrix

The tangent stiffness matrix is required when applying many nonlinear solver strategies for
implicit time integration, such as Newton’s method. It is comprised of the derivatives of
nodal forces with respect to nodal displacements. Alternative formulations are also possible,
for example one in which the nodal velocities are treated as the cardinal unknowns. A
common approach for construction of the tangent stiffness matrix is to first consider the
internal force (i.e., the constitutive model response), after which the matrix is modified to
reflect boundary conditions. For general nonlinear problems, the tangent stiffness matrix is
a function of the chosen linearization point and must be re-evaluated whenever the nodal
displacements are updated. It is important to note that several so-called linear peridynamic
constitutive models impose a nonlinear relationship between force and displacement, and
therefore require the application of a nonlinear solver. An example is the linear peridynamic
solid, in which pairwise forces are linearly related to bond stretch but nonlinearly related to
nodal displacements.

The tangent stiffness matrix is defined as

Kij =
∂f int

i (u)

∂uj
, (4)

where f int
i is a component of the internal force vector, u is the displacement vector, and uj

is a component of u. The tangent stiffness matrix relates an infinitesimal perturbation of a
displacement degree of freedom to the resulting change in the global internal force vector.
The tangent stiffness matrix for a nonlocal model contains nonzero entries for each pair of
nodes that interact directly, and is inherently more dense than that of a local model. For
a general state-based peridynamic model, direct interactions between nodes can take two
forms: interactions between nodes that are bonded to each other, and interactions between
nodes that share a common neighbor.

Methods for construction of the tangent stiffness matrix include both analytical and
computational approaches. Analytical approaches may be developed using the concept of
a peridynamic modulus state, as presented by Silling [32]. Examples of peridynamic con-
stitutive models for which a modulus state has been derived include the linear peridynamic
solid [34, 21], and the ordinary state-based viscoelasticity and plasticity models developed by
Mitchell [21, 22]. When available, the modulus state provides a direct path to construction
of the tangent stiffness matrix and is generally preferred over other approaches for reasons of
accuracy and efficiency. Computational approaches for construction of the tangent stiffness
matrix include finite-difference methods, described below, as well as methods that utilize
software engineering techniques such as automatic differentiation [12] and the complex-step
approach [6]. The Peridigm code includes a finite-difference scheme that is applicable to the
full set of available constitutive models, as well as several material-model-specific routines
that utilize the Sacado [27, 26] software package for automatic differentiation.

A finite-difference scheme for construction of the tangent stiffness matrix is presented
in Algorithm 4. Finite-difference strategies are generic in that specifics of the constitutive

17

model formulation are not considered; all that is required is application of the constitutive
model for evaluation of the internal force. Under the approach outlined in Algorithm 4, the
partial derivatives in Equation (4) are approximated using a central-difference scheme,

Kij ≈
f int
i (u + εj)− f int

i (u− εj)
2ε

. (5)

Here, εj is a vector containing a single nonzero entry, ε, at the position corresponding to
the j th degree of freedom in the discretization. The notation used in Algorithm 4 to denote
perturbed quantities is defined as follows: T ε+ is a force state evaluated under a positive
perturbation of a displacement degree of freedom, T ε− is the force state evaluated under the
analogous negative perturbation, T ε+ 〈xk − xi〉 and T ε− 〈xk − xi〉 are the force densities per
unit volume resulting from the application of the perturbed force states to the bond 〈xk − xi〉,
f ε+ and f ε− are the corresponding nodal forces, and f diff is the difference between f ε+

and f ε−. For an accurate approximation, the magnitude of ε should be chosen to be small
relative to the discretization, but not so small that the limits of machine precision become
a significant factor. The default perturbation size in Peridigm is 1.0e−6 times the nodal
spacing.

Finite-difference schemes for constructing the tangent stiffness matrix involve perturb-
ing individual displacement degrees of freedom and examining the resulting change in each
component of the global force vector. To minimize computational expense, the evaluation
of the internal force under a perturbation of a single displacement degree of freedom should
be restricted to include only those components of the internal force vector that are directly
affected. As described above, this subset of the internal force vector contains, at most, the
union of the neighbor list of the perturbed node and the neighbor lists of each neighbor of
the perturbed node.

The Peridigm algorithm for evaluating the tangent stiffness matrix by finite difference
operates by traversing each node in the discretization and evaluating the force state at that
node under a perturbation of a displacement degree of freedom. Perturbations must be con-
sidered for the node itself, as well as for each node in the node’s neighbor list. Each time the
force state is evaluated, it is applied to each bond in the neighbor list and multiplied by the
volumes connected by that bond. The resulting force values are then divided by the pertur-
bation length and assembled into the proper locations in the tangent stiffness matrix. An
assumption implicit to this approach is that the peridynamic force state at a given material
point can be determined based solely on the constitutive model data (and history) at that
point, plus basic kinematic data (e.g., position, velocity) at each neighbor. The approach
utilized in Peridigm minimizes the number of internal force calculations required for con-
struction of the tangent stiffness matrix by central finite difference. Alternative approaches,
such as those based on graph coloring, provide additional strategies for evaluating Equa-
tion (5). It should be noted that the volumes ∆Vi and ∆Vj in Algorithm 4 must be treated
in a manner consistent with evaluation of the constitutive model; if a correction for partial
neighbor intersections is used in the constitutive model, it should applied for construction
of the tangent stiffness matrix as well.

18

Algorithm 4 Construction of the tangent stiffness matrix by central finite difference.

1: procedure Tangent Stiffness Matrix
2: . Initialize the tangent stiffness matrix to zero.
3: K← 0
4: . Traverse each node in the discretization.
5: for each node i do
6: {traversal list} ← node i and all neighbors of node i
7: for each node j in {traversal list} do
8: . Evaluate the force state at xi under perturbations of displacement.
9: for each displacement degree of freedom r at node j do

10: T ε+ ← T [xi] (u + εr)
11: T ε− ← T [xi] (u− εr)
12: . Evaluate pairwise forces under perturbations of displacement.
13: for each node k in neighbor list of node i do
14: f ε+ ← T ε+ 〈xk − xi〉 ∆Vi ∆Vk
15: f ε− ← T ε− 〈xk − xi〉 ∆Vi ∆Vk
16: f diff ← f ε+ − f ε−

17: for each degree of freedom s at node k do

18: Ksr ← Ksr + f diff
s

2ε

19: end for
20: end for
21: end for
22: end for
23: end for
24: end procedure

19

This page intentionally left blank.

5 Modeling contact

Modeling contact is important for many applications of peridynamics. Impact, penetration,
and fragmentation simulations, for example, require the ability to capture multi-body contact
interactions. This includes bodies that are disconnected at the onset of a simulation, and
also those that become disconnected as a result of material failure. Contact modeling in
peridynamics has received little attention relative to contact modeling for classical finite-
element analysis, which has been addressed extensively in the literature (see, for example,
Laursen [16]). To date, the most common approach to modeling contact in peridynamics is
the short-range force approach of Silling and Askari [33]. The short-range force approach
models contact interactions between bodies using a method similar to techniques employed
in molecular dynamics. At each step in the simulation, spring-like repulsive forces are applied
between nodes that are in close proximity to one another. This approach produces acceptable
results in many cases. Alternatively, it has been demonstrated that a conventional (local)
contact algorithm may be applied within a peridynamic simulation [17].

The basic components of a contact model are the detection algorithm and the enforcement
algorithm. The detection algorithm performs a proximity search in the current (deformed)
configuration. The proximity search required for contact is not different in principle from
the proximity search required for the creation of neighbor lists. The Peridigm code executes
the proximity search for contact in three phases: geometry-based parallel decomposition,
identification and communication of off-processor data, and execution of an on-processor
proximity search. The first two steps are required only for parallel simulations. Their goal
is to reduce the parallel search to a set of serial searches. As described in Section 6, this is
achieved by creating geometry-based parallel partitions and expanding the partitions in each
direction by the contact search distance, thus collecting on each partition the necessary data
to identify contact interactions for the on-processor nodes. A serial proximity search may
then be carried out using a number of approaches, such as those based on quadtree or k -d
tree data structures. Because nodes travel a finite distance over a time step, it is occasionally
necessary to consider node paths as opposed to simply examining the node positions at the
end of the step (e.g., in hypervelocity simulations).

Short-range force algorithms consist of pairwise repulsive forces that increase in magni-
tude as the distance between nodes decreases. An extremely straightforward version of a
short-range force calculation is illustrated in Algorithm 5. Here, y denotes nodal coordi-
nates in the deformed configuration, ` is the distance between two nodes in the deformed
configuration, `o is a threshold distance (e.g., kick-in distance for short range forces), C is a
user-defined constant for controlling the magnitude of the short-range forces, fc is a contact
force magnitude per unit volume squared, M is the vector between two nodes in the deformed
configuration, and f contact denotes contact force density. Strengths of the short-range force
approach include ease of implementation and relatively low computational cost. If desired,
friction effects may be included through extensions to the short-range force model. The kine-
matic information required for a Coulomb friction model, for example, may be determined
by examining the relative motion of any two nodes interacting via contact.

21

Algorithm 5 A short-range force contact algorithm.

1: procedure Short-Range Force Contact Algorithm
2: . Initialize the contact force densities to zero.
3: for each node i do
4: f contact

i ← 0
5: end for
6: . Examine the results of the global proximity search for each node.
7: for each node i do
8: yi ← xi + ui
9: . Compute pairwise contact force densities.

10: for each node j in proximity of node i do
11: yj ← xj + uj
12: `← |yj − yi|
13: if ` < `o then
14: fc ←

(
9 C
π δ4

) (
`o−`
δ

)
15: M← yj−yi

`

16: f contact
i ← f contact

i − fc ∆Vj M
17: f contact

j ← f contact
j + fc ∆Vi M

18: end if
19: end for
20: end for
21: end procedure

22

An additional extension of the short-range force model concerns peridynamic bonds.
In its most simple form, the short-range force model does not take peridynamic bonds
into account. This results in the possibility that material points may interact through the
material model and the contact model simultaneously, for instance when a body is subjected
to large hydrostatic compression. This effectively results in rapid material stiffening, often
well beyond the stiffness prescribed by the constitutive model. This scenario can be avoided
by considering neighbor list information in the contact model and disallowing contact forces
between bonded nodes. For further discussion specific to correspondence constitutive models,
in particular the possibility of material interpenetration, see Tupek and Radovitzky [36].

The computational expense of detecting and enforcing contact interactions often com-
prises a significant portion of the overall simulation cost. One strategy of reducing this
expense is to limit the range of possible contact interactions to include only specific subre-
gions or node sets. Further, so-called self contact may be disabled by designating that contact
interactions may not occur between any two nodes that are within the same subregion.

A final consideration in contact modeling is the contact model’s effect on the maximum
stable time step for explicit time integration. The short-range force model, for example,
typically results in a reduction of the critical time step due to what is effectively an increase
in material stiffness in regions where contact is occurring. This can be problematic if the
critical time step is sharply reduced when advancing the simulation from time tn to tn+1 (see
Section 8.1). Care must be taken to ensure that the time step applied at tn is sufficiently
small to guarantee stability at tn+1.

The short-range force algorithm does not perform well under all conditions. One source
of difficulty is the tracking of surfaces. The short-range force model effectively represents
surfaces as a collection of nodes, a strategy that breaks down as the distance between adja-
cent nodes grows large under finite deformation. This scenario is exacerbated in cases where
the peridynamic discretization is derived from a nonuniform hexahedral or tetrahedral mesh
(see Section 6). In this case, slender elements are replaced by nodes that yield poor rep-
resentations of continuous surfaces. Poor surface approximations may lead to unphysical
interpenetration and subsequent numerical difficulties. A possible solution is the construc-
tion of explicit surface representations, for example using a level-set approach (cf. Chi, et
al. [7]).

Contact modeling in peridynamic simulations remains an open area of research. To
date, contact has been applied primarily within explicit transient dynamic peridynamic
simulations. A penalty- or constraint-based approach is more likely to be successful when
implicit time integration is utilized. Furthermore, general issues related to nonlocality in
contact have not been explored. For example, the interaction distance for the short-range
force contact model (`o in Algorithm 5) is typically assigned a value approximately equal to
the node spacing in the undeformed discretization, whereas the interaction distance for the
constitutive model is equal to the horizon. In this scenario, the contact model is effectively a
local model, in contrast to the constitutive law, which is nonlocal. The application of a local
contact model within a peridynamic simulation is tantamount to applying local boundary
conditions to a nonlocal model. A nonlocal contact model that produces force densities

23

acting over volumetric regions may be more appropriate for peridynamic simulations.

24

6 Meshfree discretizations for peridynamics

The meshfree approach of Silling and Askari requires that the domain of interest be dis-
cretized into a set of nodal volumes, each of which is defined by its initial coordinates,
(x, y, z), and volume, ∆V . Nodal volumes may be grouped into a blocks, each tied to a
specific material model and set of constitutive parameters. Standard Peridigm simulations
operate on a discretization defined by tuples of the form (x, y, z,∆V, block id). Discretiza-
tions of this type may be created internally within the code, read from a file, or created
by processing a hexahedral or tetrahedral mesh (e.g., a mesh created for use in a classical
finite-element code). Several options for generating peridynamic discretizations are discussed
in the recent work by Henke and Shanbhag [13], including the use of a Cartesian grid and
a more sophisticated approach based on centroidal Voronoi tessellation. Each node in a
discretization may be assigned a unique global ID. In the case of a parallel code, local (on-
processor) IDs may also be assigned, and a mapping maintained between the local and global
IDs. Unique global IDs facilitate the definition of node sets, to which initial and boundary
conditions are applied. The use of node sets to facilitate the specification of initial and
boundary conditions is commonplace in classical finite-element codes. A caveat regarding
peridynamic models is that constraints are generally specified over a volumetric region, as
opposed to a two-dimensional surface, which may complicate the specification of node sets
in practice.

The use of blocks to define sets of nodal volumes facilitates simulations involving multiple
materials and enables the application of specialized constitutive laws to bonds that cross ma-
terial boundaries. Direct application of Equation (2) results in an averaging of constitutive
responses when computing net pairwise interactions across material boundaries. Alterna-
tively, a constitutive law that is specific to a material interface may be applied. Material
damage along grain boundaries in a polycrystalline material, for instance, may be captured
with a specialized bond failure law. In related work by Katiyar, et al. [15], the harmonic
mean was shown to be an appropriate interface condition for modeling nonlocal diffusion.

Mesh generation tools developed for finite-element analyses can be applied to create dis-
cretizations for peridynamic simulations. Mesh generation software typically operates on a
geometric description of the domain and produces a mesh of solid hexahedral or tetrahedral
elements. Converting a mesh of this type into a meshfree discretization for a peridynamic
simulation is straightforward: solid elements are converted to a (x, y, z,∆V, block id) tuple,
where (x, y, z) is the centroid of the original element, ∆V is the volume of the original ele-
ment, and the block id is transferred directly from the original element to the peridynamic
nodal volume. Calculation of the volume and centroid of a tetrahedron is trivial; for details
regarding geometric calculations on hexahedral elements, see Grandy [11]. Conversion of
a finite-element mesh in this fashion yields a one-to-one relationship between the elements
in the original finite-element mesh and the nodal volumes in the meshfree peridynamic dis-
cretization. The nodes in the original mesh are not preserved, however, which complicates the
transfer of node sets defined on the original mesh to nodes in the peridynamic discretization.

25

Figure 1: Conversion of a standard finite-element mesh to a meshfree discretization. Nodes
belonging to a node set are shown in red. Nodal volumes in the meshfree discretization are
visualized as spheres having volumes equal to the (scalar) nodal values.

It is important to recognize several differences between the requirements for a viable
peridynamic discretization and those for a classical finite-element mesh. Boundary con-
ditions in the classical local theory are applied over a two-dimensional surface, whereas
nonlocal simulations require that constraints be applied over a three-dimensional volume.
This complicates the definition of node sets for peridynamic simulations due to the fact that
mesh-generation tools do not typically include functionality for defining three-dimensional
layers along domain boundaries. The use of highly graded nodal spacing, which is com-
mon in classical finite-element analyses, is an additional source of difficulty. The use of a
highly graded discretization in peridynamic simulations is problematic because the ratio of
the nodal spacing to the horizon varies wildly over the domain. Computational expense can
increase dramatically if the node spacing is reduced relative to the horizon size, which occurs
in the highly-refined regions. A final point on the requirements for a viable peridynamic dis-
cretization concerns the chosen length scale. In many peridynamic constitutive models, the
value of the horizon is raised to the fourth power, for example in the prototype microelastic
brittle material [33]. For this reason, the unit of length should be chosen such that the value
of the horizon is of order one to avoid potential numerical difficulties.

26

7 Proximity search for identification of pairwise

interactions

A proximity search is required to identify the neighbors of the material points in a peridy-
namic body. A so-called neighbor list is a record of these points, for example a list of node
IDs for all the nodes that comprise a given neighborhood. As a consequence of nonlocal-
ity, neighbor lists extend beyond the set of nearest neighbors to include all material points
lying within a sphere centered at a given material point and having a radius equal to the
peridynamic horizon. Note that, because the meshfree approach of Silling and Askari is a
Lagrangian approach, neighbor lists do not change as a result of deformation and may be
created and stored at the onset of a simulation [33].

The creation of neighbor lists, while straightforward in theory, presents several challenges
in practice. For a general unstructured discretization, a global proximity search must be ex-
ecuted to find all material points within the sphere that defines the neighborhood of each
material point in the model. For simplicity, the discussion below is restricted to the case in
which a single horizon value is assigned to the entire computational domain. For a treat-
ment of a variable horizon, see Bobaru and Ha [4] and Silling, et. al [35]. The Peridigm
code utilizes the Zoltan software package for the creation of neighbor lists [5]. The Zoltan
package contains routines with a variety of applications to parallel partitioning, load balanc-
ing, and data management, a number of which facilitate efficient proximity searches. Search
algorithms based on quadtree or k -d tree data structures provide additional alternatives. In
the case of a parallel code, proximity searches require an initial global decomposition phase.
One strategy for this initial step is to create a geometrically-based parallel decomposition, for
example using the Recursive Coordinate Bisection (RCB) algorithm [3]. When constructing
neighbor lists by examining the distance between material points, expanding the bounding
box for a given partition by a length equal to the horizon in each dimension allows for the
identification of all potential off-processor neighbors to the material points in that partition.

Examining the distance between material points is not sufficient for quadrature schemes
in which partial neighbor intersections are considered [4, 29, 28]. Following the approach of
Seleson [29] and Seleson and Littlewood [28], for example, the domain is discretized into a set
of subvolumes, each of which has a single peridynamic material point located at its centroid.
The division of the domain into a set of subvolumes is analogous to the meshing procedure
for classical finite-element analysis. In the case of finite-element analysis, the subvolumes
are used directly as elements in the numerical simulation. In the case of a peridynamic
simulation, the subvolumes are used only during pre-processing as a means to determine
accurately the extent to which any pair of material points interacts. The pivotal case is
the one in which the subvolume for a material point lies only partially within the sphere
that defines the neighborhood for another material point. In this case, the intersection
of the subvolume and the sphere may be computed and used in the calculation of pairwise
internal forces (e.g., through modification to ∆Vi and ∆Vj in Algorithm 2). Consideration of
partial intersections adds significant complexity to the creation of neighbor lists. For general
unstructured grids, the proximity search must take subvolume geometry into account. This

27

complicates both the serial proximity search and the geometric decomposition required for
parallel codes. The serial proximity search must be capable of identifying and computing the
intersections of subvolumes and spheres. The geometric decomposition required for parallel
codes must employ an expanded bounding box that allows for identification of all potential
off-processor partial intersections. Further, the results of the partial neighbor intersection
calculations must be stored for use throughout the simulation, in addition to the standard
(x, y, z,∆V, block id) data.

Care must be taken when constructing neighbor lists in the vicinity of small geometric
features. The danger is that bonds may pass across features that are small relative to the
horizon size, for example small holes or notches, in a way that is unphysical. One possible
solution is to include in the proximity search process a set of geometric entities through
which bonds may not pass. For example, a finite plane may be used to define a pre-crack.
Any bond that would pass through the pre-crack plane is excluded from the model. This
approach can be made quite general in the case of a discretization created from a standard
finite-element mesh. Shell elements, for instance, provide a means to define planes that can
be used in the proximity search process [30]. An alternative, simpler approach to controlling
the construction of neighbor lists is to explicitly allow or disallow bond creation between
specific material subregions.

28

8 Time integration

Numerical time integration plays a central role in engineering analysis codes. Conceptually,
it is the time integrator that drives the simulation and orchestrates the passing of information
to and from various computational kernels. Time integration schemes for peridynamic models
do not differ significantly from those of classical, local models, for which a vast literature
exists. Standard approaches for engineering codes can be found in the excellent books by
Hughes [14] and by Belytschko, et al. [2]. The time integration strategies for peridynamic
models presented below were adopted directly from these texts.

Time integration schemes fall into two broad categories: explicit and implicit. Explicit
time integration is typically utilized for transient simulations in which inertial effects play
an important role. It is extremely resilient, and as such is well suited for peridynamic
simulations involving large deformations and pervasive material failure. The great drawback
of explicit time integration is that it is only conditionally stable, which limits the maximum
allowable size of the time step. Implicit methods constitute a second class of time integration
schemes. They are unconditionally stable, allowing for much larger time steps than those
permitted by explicit approaches. Implicit time integration, however, requires the solution
of a system of equations involving both the current state and a future state of the system.
This adds considerable complexity and computational expense.

A discussion of explicit time integration for transient dynamics and implicit time inte-
gration for nonlinear quasi-static analysis is presented below. Far from a comprehensive
treatment of numerical time integration, the intent is to highlight the most salient aspects
of explicit and implicit methods for peridynamics. For details regarding other common time
integration strategies, such as Newmark-Beta schemes for implicit dynamics, see Belytschko,
et al. [2].

Note that, in some cases, it may be advantageous to apply multiple time integrators,
in sequence, within a single simulation. An example is mechanical or thermal preloading,
which may be simulated as a quasi-static process, followed by the simulation of a dynamic
process such as impact.

8.1 Explicit time integration for transient dynamics

Generally, explicit time integration schemes determine system response over the course of a
simulation by advancing through a large number of small time steps. At each step, known
quantities in the current state of the system are used to determine the future state of the
system. An explicit time integration scheme well suited for application to peridynamics
is outlined below. It is a central difference scheme in which velocities are defined at the
midpoints of the time intervals [2].

1. Initialize n = 0, t = 0, u = 0, and a = 0. Set initial conditions for v and initialize
material state variables (if any).

29

2. Estimate the maximum stable time step, ∆tcrit, and determine the simulation time
step, ∆t.

3. Update the times tn+1 and tn+ 1
2 : tn+1 = tn + ∆t, tn+ 1

2 = 1
2

(tn + tn+1).

4. First partial velocity update, vn+ 1
2 = vn +

(
tn+ 1

2 − tn
)

an.

5. Enforce velocity boundary conditions by setting vn+ 1
2 for nodes with prescribed ve-

locities. Displacement boundary conditions can be converted to velocities and applied
here, or they can be applied directly after step 7.

6. Update nodal displacements, un+1 = un + vn+ 1
2 ∆t.

7. Evaluate the internal force by means of the constitutive model and damage model for
un+1 and vn+ 1

2 . Update material state variables accordingly. Optionally, recompute
the estimate for the critical time step, ∆tcrit, and update the simulation time step, ∆t.

8. Evaluate contact forces for un+1 and vn+ 1
2 . Update the critical time step, ∆tcrit, if

required by the contact algorithm.

9. Compute acceleration an+1 = M−1f n+1, where M is the mass matrix and f n+1 =
f n+1
int + f n+1

ext + f n+1
contact.

10. Second partial velocity update, vn+1 = vn+ 1
2 +

(
tn+1 − tn+ 1

2

)
an+1.

11. Evaluate energy balance as a check on stability.

12. If the simulation is not complete, update n← n+ 1, go to Step 3.

The first step in the time integration scheme is initialization. The time, t, and time step,
n, as well as nodal values for displacement, u, and acceleration, a, are set to zero. The
nodal velocities, v, are be set to reflect initial conditions on the velocity field. Variables for
representing material states within a constitutive model must also be initialized in Step 1.
The maximum stable time step, also referred to as the critical time step, ∆tcrit, is determined
in Step 2, as described below. The time step, ∆t, is typically determined by multiplying the
critical time step by a safety factor. To guard against numerical instability, the safety factor
must be less than 1.0; typical values fall in the range of 0.70 to 0.95. A constant value of ∆t
may be applied throughout the course of the simulation, or, alternatively, the time step may
be recomputed as part of Steps 7 or 8 to reflect evolving model geometry, material state,
and contact interactions.

The time-stepping process begins with Step 3, in which both the time at end of the step,
tn+1, and the mid-step time, tn+ 1

2 , are computed. The midstep velocity is then determined in
Step 4 using the current values for velocity and acceleration. Step 5 concerns the application
of prescribed displacements and velocities, which are typically assigned to node sets that
define volumetric subregions within the computational domain. Prescribed velocities may

30

be applied directly. Prescribed displacements may be converted to velocities through the
relation

vn+ 1
2 =

1

∆t

(
un+1 − un

)
. (6)

The mid-step velocities, vn+ 1
2 , are then applied to determine the displacements at the end

of the time step, un+1, in Step 6.

The constitutive model, damage model, and contact model are invoked in Steps 7 and 8
for evaluation of the nodal forces, f n+1. The inputs to these models are the displacements
at the end of the time step, un+1, and the mid-step velocities, vn+ 1

2 , as well as the material
state variables stored at step n. The damage law may be applied first, to determine the
current state of damage for each bond, followed by evaluation of the constitutive model.
Contact algorithms, if any, are generally not tied directly to the constitutive model and may
be evaluated independently. Contact forces, constitutive model forces, and prescribed body
forces are summed together to determine the net force on each node.

Following determination of nodal forces, the nodal accelerations, an+1, are computed by
dividing by the mass associated with each node. The resulting acceleration values are then
applied to determine the velocities at the end of the time step, vn+1, in Step 10. The time
stepping process then returns to Step 3 and repeats until the simulation is complete.

Prior to incrementing to the next time step, it may be advantageous to carry out a
check on global energies to ensure that the simulation remains numerically stable (Step 12).
A check on the global energy balance typically involves integration of the kinetic energy,
external work, and stored elastic energy over the computation domain (cf. Equation (62)
in Silling, et al. [34]). An unphysical increase in the total energy of the system generally
indicates an unstable simulation, for example resulting from an inaccurate estimate of the
critical time step. Note that simulations involving crack formation necessarily absorb energy
through the creation of new surfaces. Care must be taken in this case because numerical
instability may manifest as the creation of additional (unphysical) cracks, as opposed to an
increase in kinetic energy or stored elastic energy.

8.2 Estimating the maximum stable time step

A means for estimating the critical time step for the prototype microelastic brittle model was
published by Silling and Askari [33]. At each material point in the discretization, a value for
the maximum stable time step is determined as follows,

∆tcrit =

√
2ρ∑

p ∆VpCp
, (7)

where ρ is the density, p iterates over all the neighbors of the given material point, ∆Vp is the
volume associated with neighbor p, and Cp is the micromodulus between the given material
point and neighbor p. The minimum value over all material points in the discretization is

31

taken as the critical time step for the simulation. Equation (7) was derived for the one-
dimensional case. Its application in two- and three-dimensional simulations results in a
conservative estimate of the time step. (Effectively, it assumes that all bonds for a given
material point are colinear.)

It has been demonstrated that Equation (7) may provide a reasonable estimate of the
maximum stable time step for other constitutive models, for example the state-based linear
peridynamic solid [19]. In this case, the micromodulus, Cp, appearing in the denominator of
Equation (7) is replaced by an effective micromodulus,

C eff
p =

1

|ξ|
18 k

πδ4
, (8)

where |ξ| is the distance between the given material point and neighbor p in the reference
configuration, k is the bulk modulus, and δ is the horizon. The second term in Equation (8)
is taken from Silling and Askari [33]; it is the spring constant for a prototype microelastic
brittle material having bulk modulus k and horizon δ.

Another option for estimating the maximum critical time step is the well-known Courant-
Friedrichs-Lewy (CFL) approach [8],

∆tcrit =
h

c
, (9)

where h is a characteristic length associated with the discretization and c is the wave speed,

c =

√
k

ρ
. (10)

Equation (9) generally yields a very conservative estimate of the critical time step for peri-
dynamic models when h is set equal to the node spacing. This is because wave propagation
in peridynamic models is largely dictated by the size of the horizon. The CFL limit is
commonly applied in classical finite-element analyses, where nodes interact directly only
when connected by a common element. In contrast, nodes in a peridynamic simulation may
interact directly when separated by as much as twice the horizon. A natural question regard-
ing Equation (9) is, can the horizon be used as the value for h? In preliminary numerical
experiments, this approach yielded a nonconservative critical time step [19].

8.3 Implicit time integration for quasi-statics

Quasi-static analysis is appropriate for simulations in which relatively large load steps are
desirable and in which dynamic effects are negligible. The governing equation for quasi-static
simulations is obtained by setting the acceleration term to zero in Equation (2),∑

Hx

(T [x, t] 〈q− x〉 −T [q, t] 〈x− q〉) ∆Vq + b (x, t) = 0. (11)

32

A quasi-static simulation consists of a series of load steps at which static equilibrium is en-
forced. Dynamic (inertial) phenomena, such as wave propagation, are not considered. At
the onset of each load step, the boundary conditions are updated. In contrast to explicit
transient dynamics, this update constitutes an increase in the applied load, as opposed to
an increment of a physically-meaningful time parameter. Updating the boundary conditions
generally results in an unequilibrated system configuration. The challenge is then to de-
termine the configuration of the degrees of freedom not subjected to kinematic boundary
conditions such that equilibrium is re-established.

The equilibrium configuration for a given load step is determined by minimizing the
nodal forces. This process focuses on the residual vector, r, which is defined as the nodal
force vector with the degrees of freedom subject to kinematic boundary conditions removed
or set to zero. In a perfectly equilibrated configuration, the residual vector is equal to 0.
A scalar-valued residual, r, is defined as a means to track the incremental progress of the
nonlinear solver as r approaches 0. The scalar-valued residual may be defined, for example,
as the `2-norm or ∞-norm of r. A load step is complete when r has dropped below a
specified threshold value. The chosen form of r and the specified threshold value define
the convergence criterion for the nonlinear solver. For additional discussion of convergence
criteria for the nonlinear solution process, see Belytschko, et al. [2].

The solution procedure outlined below for nonlinear quasi-static simulations is valid for
both linear and nonlinear problems. For linear problems, however, the iterative procedure
for reduction of the residual is not required and may be replaced with a single solve of the
global linear system, given in Step 5b, below. In the linear case, a single Newton step, ∆u,
is guaranteed to re-establish static equilibrium.

The solution process for general, nonlinear quasi-static peridynamic simulations using
Newton’s method as the nonlinear solver may be written as follows:

1. Initialize n = 0, u = 0, and v = 0. Initialize material state variables.

2. Update the load step n← n+ 1 and pseudo-time t. Update the boundary conditions.

3. Evaluate the residual vector, r, and residual r. Determine the convergence criterion
for the load step.

4. Assign an initial guess to the trial displacement utrial (for example, utrial = un).

5. Apply Newton’s method to minimize the residual.

(a) Construct the tangent stiffness matrix, K, for the configuration utrial (recompute,
reuse, or modify).

(b) Solve the linear system K ∆u = −r for the Newton step, ∆u.

(c) Set utrial = utrial + ∆u.

(d) Evaluate the residual vector, r, and the residual, r, for the updated configuration
utrial.

33

(e) If the convergence criterion is not met, return to 5a.

6. Set un+1 = utrial. Set material state data to their trial values.

7. If simulation not complete, go to 2.

The simulation begins with field initialization, as well as the initialization of material state
variables associated with the constitutive models. It is assumed that the system is in equilib-
rium at the onset of the simulation. Load stepping begins with Step 2, in which an increment
of the boundary conditions is applied. This may take the form of updated displacement val-
ues in the case of kinematic boundary conditions, or updated external force values in the
case of prescribed body forces. The extent to which the system is no longer in equilibrium
is determined through the residual evaluation in Step 3. As discussed above, the residual
is a function of the forces corresponding to degrees of freedom not subjected to kinematic
boundary conditions. (The forces corresponding to degrees of freedom at which kinematic
boundary conditions are applied are generally nonzero and are referred to as reaction forces.)
The convergence criterion for a given load step is typically computed relative to the initial
residual value, although an absolute criterion may also be used.

Solution of the nonlinear problem begins with Step 4. The goal is to determine a displace-
ment vector increment, ∆u, that will reduce the residual such that the convergence criterion
is met. While many techniques exist for solving nonlinear problems, Newton’s method is
perhaps the most straightforward. Here, the residual is minimized by solving a series of
linear problems. The linear problems are defined as

K ∆u = −r, (12)

where K is the tangent stiffness matrix, r is the residual vector, and ∆u is an (unknown)
increment in the nodal displacements. The tangent matrix is a linearization of the system
about the current trial displacement, utrial, as described in Section 4. Prior to solving the
linear system in Equation (12), the tangent stiffness matrix and right-hand side vector are
typically modified to reflect kinematic boundary conditions. One strategy is to set the rows
and columns of the stiffness matrix corresponding to kinematic boundary conditions to zero,
with a scalar on the diagonal (e.g., the `2-norm of the unmodified diagonal). The entries in
the residual vector corresponding to kinematic boundary conditions are also set to zero. The
result of these modifications is that the solution of Equation (12) yields a zero increment in
displacement for degrees of freedom corresponding to kinematic boundary conditions.

A quasi-static load step is deemed to be converged with the residual drops below a
specified threshold value. The solution procedure then advances to Step 6, in which both
the field variables and the material state variables are set equal to their trial values. The
load stepping process is then repeated until the simulation is complete.

34

9 Example simulations

Results of an impact and fragmentation simulation and the results of a tensile bar simulation
are presented in the following sections. Taken together, they are realizations of the numeri-
cal and computational strategies discussed above for evaluation of peridynamic constitutive
models, calculation of the tangent stiffness matrix, contact modeling, and explicit and im-
plicit time integration. The first is an explicit transient dynamics simulation of fracture that
results from a projectile impacting a brittle disk. It is an initial value problem in which an
initial velocity is assigned to the projectile. The second is a quasi-static simulation of a bar
loaded in tension. In this case, the simulation is driven by prescribed displacement boundary
conditions applied to the end portions of the tensile specimen. Both simulations are fully
three-dimensional and were carried out using Peridigm [24, 25].

9.1 Fragmentation of a brittle disk resulting from impact

A peridynamic simulation of a fragmenting brittle disk is illustrated in Figure 2. It is a
modified version of the brittle fragmentation simulation presented by Silling and Askari [33],
variations of which were later carried out by Parks, et al. [23], and Henke and Shanbhag [13].
The simulation is presented for the purpose of demonstrating explicit time integration for
transient dynamics (Section 8.1), contact (Section 5), and crack formation via bond failure
(Section 3). For a more complete treatment of modeling brittle fragmentation with peri-
dynamics, including an investigation of convergence with respect to nodal spacing, horizon
size, and time step size, see Henke and Shanbhag [13].

The disk and projectile were modeled using the linear peridynamic solid constitutive
model [34], and material failure in the disk was modeled with the critical stretch bond
failure law [33]. Constitutive model parameters are given in Tables 1 and 2. The geometry
of the disk is a cylinder of radius 37.0 mm and height 2.5 mm. The discretization for the
disk was created by converting an unstructured hexahedral mesh, created with the Cubit
mesh generation code [9], into a meshfree discretization containing approximately 180 000
nodes. The geometry of the projectile is a sphere with radius 5.0 mm. The discretization
for the projectile was created by converting a tetrahedral mesh, created with Cubit, into a
meshfree representation containing approximately 18 000 nodes. The node spacing for both
the disk and the projectile was set to roughly one third of the peridynamic horizon. Contact
was modeled with a short-range force contact model, as described in Section 5. The contact
radius was set to 0.775 mm and the spring constant to 1000.0 GPa. The disk was initially
at rest, and the projectile was assigned an initial velocity of 100.0 m/s. The simulation was
run to a final simulation time of 400.0 µs. A constant time step of 0.0416 µs (0.7 times the
estimated critical time step) was used throughout the simulation. The fragmenting disk
simulation was run in parallel using ten 3.0 GHz Intel Xeon processors, requiring a total run
time of approximately 2.8 hours.

35

Table 1: Constitutive parameters for the disk, modeled using the linear peridynamic solid
constitutive model and the critical stretch bond failure law.

Parameter Value
Horizon 1.17 mm
Density 2.20 g/cm3

Bulk Modulus 14.90 GPa
Shear Modulus 8.94 GPa
Critical Stretch 0.0005

Table 2: Constitutive parameters for the projectile, modeled using the linear peridynamic
solid constitutive model. No bond failure law was assigned to the projectile.

Parameter Value
Horizon 1.17 mm
Density 7.70 g/cm3

Bulk Modulus 160.00 GPa
Shear Modulus 78.30 GPa

9.2 Quasi-static simulation of a tensile test

A peridynamic simulation of a tensile test experiment is presented in Figure 3. The simula-
tion replicates a standard laboratory test for material characterization [1]. The simulation
was carried out using implicit quasi-static time integration (Section 8.3). The bar was
modeled using an elastic correspondence constitutive model [34]. As described by Little-
wood [18], and Tupek and Radovitzky [36], the formulation for correspondence constitutive
models given by Silling, et al. [34], may exhibit unphysical low-energy modes of deformation.
An additional stabilization term was applied in the tensile test simulation to mitigate the
impact of these low-energy modes on the solution [18]. Constitutive model parameters for the

(a) 0.0 µs. (b) 44.0 µs. (c) 131.0 µs.

Figure 2: Explicit dynamic simulation of brittle fracture resulting from impact. The color
scale denotes damage, which is defined as the percentage of broken bonds for a given material
point.

36

Table 3: Constitutive parameters for the tensile bar. The projectile was modeled using a
linear elastic correspondence constitutive law.

Parameter Value
Horizon 0.095 25 cm
Density 8.00 g/cm3

Young’s Modulus 180.00 GPa
Poisson’s Ratio 0.30

Stabilization Coefficient 0.02

bar are given in Table 3. The length of the tensile bar is 10.16 cm, with a maximum width of
1.27 cm, a minimum width of 0.635 cm, and a thickness of 0.315 cm. The discretization was
created by converting an unstructured hexahedral mesh, created using Cubit, to a meshfree
representation containing approximately 99 000 nodes. The simulation was divided into four
load steps. At each load step, the nonlinear solver was applied to reduce the residual by
approximately nine orders of magnitude. The tensile bar simulation was run in parallel using
ten 3.0 GHz Intel Xeon processors, requiring a total run time of approximately 1.3 hours.

Boundary conditions were applied in the form of prescribed displacements over volumes
at the ends of the bar. The volumes over which prescribed displacements were applied
were defined as spanning from each end of the bar to a distance equal to two times the
horizon inward from the end of the bar. Nodes within these volumes were assigned an initial
displacement of zero and a final displacement equal to 0.005 x, where x is the distance
from the center of the bar (the origin). The result is a prescribed linear displacement field
corresponding to an engineering strain of 0.5% applied to the end portions of the bar. This
displacement field is an approximation (educated guess that disregards the variable cross
section of the bar) of the true displacement field that would occur in a physical tensile bar
experiment. It is expected that, due to the approximate nature of the boundary conditions,
unphysical artifacts will be present in and around the end segments of the bar. These
artifacts are are not expected to significantly pollute the solution in the narrow section of
the bar.

The tensile bar simulation was designed to mimic a standard engineering tensile test
experiment for material characterization. Young’s modulus and Poisson’s ratio may be
determined experimentally by monitoring the elongation of small segments of the bar using
strain gauges and tracking the total force applied to the bar using a load cell. These data
can then be used to compute the engineering strain (change in length of the strain gauge
divided by its initial length) in both the lateral and longitudinal directions as well as the
engineering stress (total force divided by the initial cross-sectional area of the narrow section
of the bar). The Young’s modulus is computed as the ratio of the engineering stress to the
engineering strain in the longitudinal direction. Poisson’s ratio is computed as the ratio of the
lateral strain to the longitudinal strain. This procedure was modeled within the peridynamic
simulation by tracking the displacements of pairs of nodes as well as the net reaction forces
in the end segments of the bar. One pair of nodes was chosen to approximate the positions

37

at which the ends of a 2.54 cm strain gauge would be located, assuming the strain gauge
were aligned in the longitudinal direction and centered along the length of the bar. A second
pair of nodes was chosen to approximate a lateral strain gauge spanning a narrow 0.54 cm
section of the bar centered in the longitudinal direction. The resulting engineering stress-
strain curve is presented in Figure 3b. The value of Young’s modulus calculated in this
manner was 181.5 GPa, which differs from the prescribed value of 180.0 GPa by 0.83%. The
Poisson’s ratio was calculated to be 0.309, which differs from the prescribed value of 0.30 by
3.0%.

38

(a) Displacement in the loading direction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

En
gi

ne
er

in
g

St
re

ss
 (G

Pa
)

Engineering Strain (cm/cm)

(b) Computed engineering stress-strain curve. The recovered elastic modulus is 181.5 GPa.

 0

 0.0005

 0.001

 0.0015

 0.002

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

La
te

ra
l E

ng
in

ee
rin

g
St

ra
in

 (c
m

/c
m

)

Longitudinal Engineering Strain (cm/cm)

Slope = 0.309

(c) Computed lateral and longitudinal strains. The recovered Poisson’s ratio is 0.309.

Figure 3: Quasi-static simulation of a tensile test.

39

This page intentionally left blank.

10 Summary

The application of peridynamics for computational simulation depends critically on an ef-
ficient and robust software implementation. In the preceding sections, a roadmap was pre-
sented for implementation of the meshfree approach of Silling and Askari [33], which is the nu-
merical technique used for the vast majority of engineering peridynamic simulations to date.
Codes developed at Sandia National Laboratories, including EMU, Peridigm, LAMMPS, and
Sierra/SolidMechanics, contain peridynamics functionality based on this approach.

The state of computational peridynamics codes reflects the level of maturity of peridy-
namics as a whole. While great strides have been made since the introduction of peridynamics
by Silling in 2000 [31], numerous open research areas remain. With respect to computational
simulation, alternatives to the meshfree approach of Silling and Askari should be explored,
including alternative discretization techniques, methods for higher-order quadrature, and Eu-
lerian or Arbitrary Lagrangian-Eulerian (ALE) formulations. Constitutive models, contact
models, and bond-failure models remain significantly limited, particularly in the context of
implicit time integration. In addition to theoretical and numerical considerations, widespread
adoption of peridynamics as a tool for engineering analysis requires improvements in the per-
formance and usability of computational peridynamics codes. Practitioners accustomed to
mainstream finite-element analysis tools would benefit from pre- and post-processing tools
designed specifically for peridynamic models, for example for the specification of volumetric
regions for the application of boundary conditions.

Nonlocality pervades many aspects of a peridynamic simulation code. This is apparent
within the internal force evaluation, where constitutive model routines must traverse a neigh-
bor list data structure, and in the tangent stiffness matrix, which is significantly more dense
that its counterpart in the local theory. The material in the preceding sections draws from
experience implementing both standalone peridynamics codes and peridynamics function-
ality within larger software packages. It is hoped that the material presented will provide
clarity on the implementation of peridynamic theory, as presented in the literature to date,
in a computational simulation code.

41

This page intentionally left blank.

References

[1] ASTM Standard E8 / E8M-13a. Standard test methods for tension testing of metallic
materials. ASTM International, West Conshohocken, PA, 2013.

[2] T. Belytschko, W. K. Liu, and B. Moran. Nonlinear finite elements for continua and
structures. John Wiley & Sons, Ltd., Chichester, England, 2000.

[3] M. Berger and S. Bokhari. A partitioning strategy for nonuniform problems on multi-
processors. IEEE Transactions on Computers, C-36(5):570–580, 1987.

[4] F. Bobaru and D. Y. Ha. Adaptive refinement and multiscale modeling in 2D peridy-
namics. International Journal for Multiscale Computational Engineering, 9(6):635–660,
2011.

[5] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. The Zoltan and
Isorropia parallel toolkits for combinatorial scientific computing: partitioning, ordering,
and coloring. Scientific Programming, 20(2), 2012.

[6] M. D. Brothers, J. T. Foster, and H. R. Millwater. A comparison of different methods
for calculating tangent-stiffness matrices in a massively parallel computational peridy-
namics code. Computer Methods in Applied Mechanics and Engineering, 279:247–267,
2014.

[7] S.-W. Chi, C.-H. Lee, J.-S. Chen, and P.-C. Cuan. A level set enhanced natural ker-
nel contact algorithm for impact and penetration modeling. International Journal for
Numerical Methods in Engineering, 2014.

[8] R. Courant, K. O. Friedrichs, and H. Lewy. Über die partiellen differenzensleichungen
der mathematischen physik. Mathematische Annalen, 100(1):32–74, 1928.

[9] Cubit mesh generation code, 2014. http://cubit.sandia.gov.

[10] J. T. Foster, S. A. Silling, and W. Chen. An energy based failure criterion for use
with peridynamic states. Journal for Multiscale Computational Engineering, 9:675–687,
2011.

[11] J. Grandy. Efficient computation of volume of hexahedral cells. Technical Report
UCRL-ID-128886, Lawrence Livermore National Laboratory, Livermore, CA, 1997.

[12] A. Griewank and A. Walther. Evaluating derivatives: Principles and techniques of
algorithmic differentiation, second edition. Frontiers in Applied Mathematics. SIAM,
Philadelphia, PA, 2008.

[13] S. F. Henke and S. Shanbhag. Mesh sensitivity in peridynamic simulations. Computer
Physics Communications, 185:181–193, 2014.

[14] T. J. R. Hughes. The finite element method: linear static and dynamic finite element
analysis. Englewood Cliffs, N.J. : Prentice-Hall, 1987.

43

[15] A. Katiyar, J. T. Foster, H. Ouchi, and M. M. Sharma. A peridynamic formulation of
pressure driven convective fluid transport in porous media. Journal of Computational
Physics, 261:209–229, 2014.

[16] T. A. Laursen. Computational contact and impact mechanics: fundamentals of modeling
interfacial phenomena in nonlinear finite element analysis. Springer-Verlag, Heidelberg,
Germany, 2002.

[17] D. J. Littlewood. Simulation of dynamic fracture using peridynamics, finite element
modeling, and contact. In Proceedings of the ASME 2010 International Mechanical
Engineering Congress and Exposition (IMECE), Vancouver, British Columbia, Canada,
2010.

[18] D. J. Littlewood. A nonlocal approach to modeling crack nucleation in AA 7075-T651.
In Proceedings of the ASME 2011 International Mechanical Engineering Congress and
Exposition (IMECE), Denver, Colorado, 2011.

[19] D. J. Littlewood, J. D. Thomas, and T. R. Shelton. Estimation of the critical time step
for peridynamic models. Presented at the SIAM Conference on Mathematical Aspects
of Materials Science, Philadelphia, Pennsylvania, 2013.

[20] R. W. Macek and S. A. Silling. Peridynamics via finite element analysis. Finite Elements
in Analysis and Design, 43:1169–1178, 2007.

[21] J. A. Mitchell. A nonlocal, ordinary, state-based plasticity model for peridynamics.
SAND Report 2011-3166, Sandia National Laboratories, Albuquerque, NM and Liver-
more, CA, 2011.

[22] J. A. Mitchell. A nonlocal, ordinary-state-based viscoelasticity model for peridynam-
ics. SAND Report 2011-8064, Sandia National Laboratories, Albuquerque, NM and
Livermore, CA, 2011.

[23] M. L. Parks, R. B. Lehoucq, S. J. Plimpton, and S. A. Silling. Implementing peridynam-
ics within a molecular dynamics code. Computer Physics Communications, 179(11):777–
783, 2008.

[24] M. L. Parks, D. J. Littlewood, J. A. Mitchell, and S. A. Silling. Peridigm Users’ Guide
v1.0.0. SAND Report 2012-7800, Sandia National Laboratories, Albuquerque, NM and
Livermore, CA, 2012.

[25] Peridigm peridynamics code, 2014. http://peridigm.sandia.gov.

[26] E. Phipps and R. Pawlowski. Efficient expression templates for operator overloading-
based automatic differentiation. In S. Forth, P. Hovland, E. Phipps, J. Uke, and
A. Walther, editors, Recent Advances in Algorithmic Differentiation, volume 87 of Lec-
ture Notes in Computational Science and Engineering. Springer, 2012.

[27] Sacado software package, 2015. http://trilinos.org/packages/sacado/.

44

[28] P. Seleson and D. J. Littlewood. Convergence studies in meshfree peridynamic simula-
tions. Computers and Mathematics with Applications. To appear.

[29] P. D. Seleson. Improved one-point quadrature algorithms for two-dimensional peridy-
namic models based on analytical calculations. Computer Methods in Applied Mechanics
and Engineering, 282:184–217, 2014.

[30] SIERRA Solid Mechanics Team. Sierra/SolidMechanics 4.36 user’s guide. SAND Report
2015-2199, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2015.

[31] S. A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces.
Journal of the Mechanics and Physics of Solids, 48:175–209, 2000.

[32] S. A. Silling. Linearized theory of peridynamic states. Journal of Elasticity, 99:85–111,
2010.

[33] S. A. Silling and E. Askari. A meshfree method based on the peridynamic model of
solid mechanics. Computers and Structures, 83:1526–1535, 2005.

[34] S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states and
constitutive modeling. Journal of Elasticity, 88:151–184, 2007.

[35] S. A. Silling, D. J. Littlewood, and P. D. Seleson. Variable horizon in a peridynamic
medium. Journal of Mechanics of Materials and Structures. To appear.

[36] M. R. Tupek and R. Radovitzky. An extended constitutive correspondence formulation
of peridynamics based on nonlinear bond-strain measures. Journal of the Mechanics
and Physics of Solids, 65:82–92, 2014.

45

This page intentionally left blank.

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

47

This page intentionally left blank.

v1.38

